
O S P

C 
S

Authors:
Optin Team
hwdev@optin.hu

Revised by:
Dénes Attila A

May 8, 2014
Document version: EN-1.1.519

OSP - Communication protocol specification 1/ 18

Table of content

1 Introduction 3

2 Legal Notice 3

3 The foundations of the communication 4
3.1 Packet structure . 4
3.2 Definitions . 4

3.2.1 In-flight-uniqueness . 4
3.2.2 Identifiers . 4
3.2.3 String/binary types . 5
3.2.4 Client and Server . 5
3.2.5 Byte order . 5

3.3 Guarantees . 5
3.3.1 MessageID guarantees . 5

4 Fixed header 6
4.1 Message Type (MsgType) . 6
4.2 Cached bit (C) . 7
4.3 Saved bit (S) . 7
4.4 AckReq bit (A) . 8
4.5 Length field . 8

5 Packet types 9
5.1 CONNECT/DISCONNECT . 10

5.1.1 Client ⇒ Server . 10
5.1.2 Server ⇒ Client . 11

5.2 PINGREQ . 11
5.3 PINGRESP . 12
5.4 COMMAND . 12

5.4.1 Server ⇒ Client . 13
5.4.2 Client ⇒ Server . 13

5.5 FIRMWARE . 14
5.5.1 Client ⇒ Server . 14
5.5.2 Server ⇒ Client . 15

5.6 DATA . 15
5.6.1 Client ⇒ Server . 16
5.6.2 Server ⇒ Client . 17

5.7 RESEND . 17

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 2/ 18

5.7.1 Server ⇒ Client . 17
5.7.2 Client ⇒ Server . 17

5.8 ACKNOWLEDGE . 18
5.8.1 Server ⇒ Client . 18
5.8.2 Client ⇒ Server . 18

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 3/ 18

1 Introduction

The Optin Sensor Protocol is a payload-agnostic client-server protocol with small
overhead.

• It’s simplicity makes it a perfect choice for devices with scarcer resources.

• It provides numerous optional solutions to guarantee that the critical packets
reach their destiny and that the number of lost packets are reduced.

• The handling of the non-critical packets are not burdened by the restrictions
that come with the application of the security tasks.

This specification can be divided into two chapters:

• General message format, which is valid for every message.

• The specific parts of the messages types.

Attention: the device-specific content of the DATA messages can be found in the
appendix.

2 Legal Notice

The Optin Kft. (henceforth Author) provides access to use or implement the OSP,
to copy or publish the protocol-specification under the conditions that EVERY copy
of the protocol-specification or any part that shows up in other documents, specifi-
cations, articles or every system that implements the OSP contains the followings:

• The name of the Author:
(Optin Kft.)

• a link or URL to the OSP specification on the Author’s website:
www.en.optin.hu/products-services/optin-sensor-protocol/

Optin Kft.

May 2014.

www.en.optin.hu

http://www.en.optin.hu/products-services/optin-sensor-protocol/

OSP - Communication protocol specification 4/ 18

3 The foundations of the communication

The communication with the protocol happens always through packets. The pack-
ets are atomic from the protocol’s point of view (The smallest intelligent units with
meaning). The packets can be embedded into other protocols and another pro-
tocol can be embedded in the packets into a maximum of one point (See: DATA
and COMMAND packets).
This specification doesn’t define whether these packets should be sent in a whole
or divided into optional chunks.

3.1 Packet structure

Every packet consists of the following parts: a fixed header and the body of the
packet. The fixed header identifies the type of the packet, sets its length and
includes flags that define the state of the package. The body of the packet is
optional, can contain a specialized header, which is present once in the packet
and data payload which can contain one or more data.

Fixed header: MsgType + Flags
Length

Packet body: Specialized header
Data payload

3.2 Definitions

3.2.1 In-flight-uniqueness

An X semantic y value is ”in-flight-unique” if there is no packet in a given moment
and in a given direction on the communication channel, nor in the communication
caches, memories that’s X value is also y.
Examples are the MessageID and the CommandID. The in-flight-unique values
help to identify the packets unequivocally in a window of time defined by the re-
ceiver.

3.2.2 Identifiers

The identifiers are positive numbers. The value 0 is always reserved and indicates
an error or an invalid entry.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 5/ 18

3.2.3 String/binary types

String can only occur at the end of the packets, its length is limitless and there is
no closing byte. The end of the string can be calculated with the packet’s Length
field.
In terms of the protocol the strings and binaries are equal: byte-sequences with
arbitrary length.

3.2.4 Client and Server

The Client is the one who initiates the communication and connects to the Server.
The current 1.1. version of the protocol restricts that DATA packet can only be com-
posed by the Client (like sensor or set of sensors) and sent to the Server, which
works as a data collector.

3.2.5 Byte order

In the OSP, like in most network protocols, big-endian coding is used for values
with more bytes. This means that the most significant byte (MSB) is in front and the
LSB is at the end.
The Length field is an exception, which has a special coding, see below.

3.3 Guarantees

The specification guarantees the followings:

3.3.1 MessageID guarantees

If the MessageID is present in the packet:

• It’s always 1 byte long.

• It’s always the first byte after the Fixed Header.

• The Client can only set AckReq bit to packets which contain the MessageID.

• The server can request back the packet that belongs to the last in-flight K
MessageID with the RESEND packet. The value of the K is defined implicitly
by the parties (For examples the server might know it from the ModuleID or
the DeviceType).

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 6/ 18

4 Fixed header

Every packet starts with a fixed header, which is a minimum of 2 bytes and a max-
imum of 5 bytes long depending on the changing Length field.

The format of the fix header is the following:

8-5.bit 4.bit 3.bit 2.bit 1.bit

1st byte MsgType Cached Saved AckReq Reserved

2nd byte Length ([1-4] byte, chaining)

Table 1: The structure of the fixed header

1st byte:
Contains the type of the packet (MsgType) and the status flags (Cached, Saved,
Ack/Req).

2nd byte:
The field that defines the packet’s size (at least 1 byte).

4.1 Message Type (MsgType)

Position: 1st byte, 8-5th bit

The packet’s type, it is a 4 bit unsigned, enum value. Its meaning is shown in
Chart 2.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 7/ 18

MsgType’s value Short name Description

0x00 [RESERVED] Not in use!

0x01 CONECT/DISCONNECT A packet initiating a connection

or disconnection with the Server

0x02 COMMAND Command type packet

0x03 ACKNOWLEDGE Acknowledgement packet for an

earlier packet to be acknowl-

edged

0x04 PINGREQ Ping request

0x05 PINGRESP Ping response

0x06 FIRMWARE Firmware packet

0x07 RESEND Requests resend

0x08 DATA General data packet

[0x09 - 0x0F] [RESERVED] For further development

Table 2: The meaning of the MsgType values

4.2 Cached bit (C)

Position: 1st byte, 4th bit

If this bit has a value of 1, than it’s a packet that was attempted to be sent by
the device at least once. This is possible in the following situations:

• If the server requested a packet to be resent with the RESEND command.

• If the receipt to the packet to be acknowledged has not yet arrived and it
was resent automatically.

• The Client detected that the packet was not sent and tries to send it again.

4.3 Saved bit (S)

Position: 1st byte, 3rd bit

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 8/ 18

If this bit is set to 1 than it’s a packet which was reread from a persistent stor-
age (internal Flash or SD card). This results in the transmission of an earlier data.
Depending on the application, configuring the bit is justified for example in the
following situations:

• There was no connection with the server for a long time.

• While roaming, the data forwarding was disabled or reduced and the device
was reconnected to a domestic network.

• Mobile data forwarding was disabled and authorized again.

When the packets produced during one of the abovementioned or similar network
dropout are sent, the packet’s Saved bit must be configured.

4.4 AckReq bit (A)

Position: 1st byte, 2nd bit

If this bit is set to 1, it is a packet that must be acknowledged by the server. The
signification can happen by sending an ACKNOWLEDGE packet.

4.5 Length field

Position: 2nd byte

The length of the complete message, including the fixed header section. This
field’s length alternates between 1-4 bytes. The first byte’s highest-order bit (8. bit)
is not a part of the represented number. If this is turned on the following byte also
becomes a part of the length and so on. This way every byte contributes with 7 bit
to the length.

For example: the length field of a 64 byte message simply consists of 1 byte with
a 0x40 value. However, if this message’s length is 321 byte (2 ∗ 128+65), the field
becomes two byte long. The value of the first byte is 65 + 128 = 193 according
to the LSB first coding. The highest-order bit indicates that there is at least a one
byte follow-up. The second byte’s value is 2.

Since the protocol limits the length field in 4 bytes, the applications can send a
maximum number of 268 435 455 bytes (256 MB) data in a packet.

In Figure 1. we can see the decoding algorithm of the length field. When the algo-
rithm finishes the value variable will contain the length of the message in bytes.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 9/ 18

// Pseudo C code
int multiplier = 1;
int value = 0;
do {

digit = next_byte_from_stream;
value += (digit & 127) * multiplier;
multiplier *= 128;

} while ((digit & 128) != 0)

Figure 1: The decoding algorithm of the Length field.

5 Packet types

In the following description we mark in a short way the state of the C = Cached, S
= Saved and A = AckReq bits as well as the R = Reserved bit.
The X symbol stands for an arbitrary value, the 0 for a fix zero, the 1 for a fix one
value.

E.g.:

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 0 0 1 0 0 0 X
2nd byte Length

This means the following:
Based on the MessageType this is a CONNECT packet in which the Cached, the
Saved and the AckReq flag must always have a fix 0 value.

The violation of the rules of the flag bits must always result in the immediate termi-
nation of the communication. The incorrect operation of any one of the three bits
can start a process that leads to a series of communicational errors.

An example for this would be the irresponsible use of the AckReq bit: it would
be pointless to request ACKNOWLEDGE to a packet that has no MessageID.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 10/ 18

5.1 CONNECT/DISCONNECT

The packet that indicates the intention to connect, the authentication and the con-
firmation or the refusal of the connection.
The fixed header is identical, but the packet body depends on whether the Client
or the Server sends it. The CONNECT packet may not have any of the Cached,
Saved or AckReq bit set.
Connection is always initiated by the Client towards the Server.

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 0 0 1 0 0 0 X
2nd byte Length

5.1.1 Client ⇒ Server

The Client indicates the request to connect to the server, the first packet after
the creation of the TCP Channel has to be a CONNECT packet. To every further
CONNECT command the Server has to terminate the communication: this is also
the indication to request disconnection from the Client.

Packet body:

Description
1st byte DeviceType (MSB)
2nd byte DeviceType (LSB)

3rd byte ModuleID (MSB)
4th byte ModuleID (…)
5th byte ModuleID (…)
6th byte ModuleID (LSB)

7th byte ProtocolVersion

8th byte Password (string)
…

nth byte Password (string)

DeviceType: the Client’s device identifier.

Value Meaning
0x0000 Invalid
0x0001 IRIS.base FW 2.0

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 11/ 18

ModuleID: The Client’s configured ID. A 4 byte value.

ProtocolVersion: The OSP version requested to be used by the Client.

5.1.2 Server ⇒ Client

The Server’s response to the first CONNECT message in the TCP Channel. The
Server doesn’t answer to the DISCONNECT stance (to a CONNECT message in a
live connection).

Packet body:

Description
1st byte ResponseCode

2nd byte Timestamp (MSB)
3rd byte Timestamp (…)
4th byte Timestamp (…)
5th byte Timestamp (LSB)

ResponseCode: The answer to the request for connection.

Value Meaning
0x00 Denied
0x01 Succesful
0x02 Incorrect ModuleID
0x03 Incorrect DeviceType
0x04 Incorrect ProtocolVersion
0x05 Incorrect authentication
… Reserved values

Timestamp: The moment of connection at the Server’s side in Unix Time format.
The Client can use it to set its clocks.

5.2 PINGREQ

Both parties can send this to each other. Its function is solely to test the integrity
of the connection.
Any party can send one PINGREQ in a given moment, and cannot send any more
until exactly one PINGRESP packet arrives.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 12/ 18

The violation of the guideline can result in any decision depending on the imple-
mentation of the other party. (For example to disconnect, to ignore the unneces-
sary PINGREQ packets or to answer to all).
A PINGREQ packet can only consist of the following fixed header (2 bytes).

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 1 0 0 0 0 0 X
2nd byte Length

5.3 PINGRESP

Both parties can send this to each other. A PINGRESP packet must always be pre-
ceded by exactly one PINGREQ packet going in the other direction.
An unexpected PINGRESP packet can result in any decision depending on the im-
plementation of the receiving party.
A PINGRESP packet can only consist of the following fixed header (2 bytes).

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 1 0 1 0 0 0 X
2nd byte Length

5.4 COMMAND

To execute remote commands. The packet contains the commands in a textual or
binary form. (It’s unimportant for the protocol).
The COMMAND packet always contains an in-flight-unique command identifier.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 13/ 18

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 0 1 0 0 0 0 X
2nd byte Length

5.4.1 Server ⇒ Client

Note: It’s the Server’s responsibility to send commands that the Client can un-
derstand. These commands can be found in the documentation of that specific
device that implements the OSP.

Packet body:

Description
1st byte CommandID

2nd byte Script (string)
…

nth byte Script (string)

CommandID: The command’s in-flight-unique identifier. It is important to define it,
because this way the latter responses to the consecutive commands can be iden-
tified unambiguously.

Script: The command and it’s parameters in a textual or binary form.

5.4.2 Client ⇒ Server

The Client’s response to one of the commands sent by the Server.

Packet body:

Description
1st byte CommandID

2nd byte ExitCode

3rd byte Response (string)
…

nth byte Response (string)

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 14/ 18

CommandID: The command’s in-flight-unique identifier. The response to the com-
mand with the same CommandID. If the Client sends back an invalid ID the Server
ignores it.

ExitCode: The command’s return code that depends on the device.

Response: The Client’s answer to the command. (Can also be an empty string)

5.5 FIRMWARE

The basic unit of the communication procedure. TheClient identifieswhich firmware
to download with it’s name and requests it in any arbitrarily sized chunks from the
Server.

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 1 1 0 0 X 0 X
2nd byte Length

5.5.1 Client ⇒ Server

The Client indicates to the Server which chunk of the firmware it requests.

Packet body:

Description
1st byte ChunkID (MSB)
2nd byte ChunkID (LSB)

3rd byte FirmwareName (string)
…

22nd byte FirmwareName (string)

ChunkID: The identifier of the firmware chunk. It’s a 2 byte, unsigned value. A
maximum of 65535 packets is possible..
The protocol doesn’t define the size of these chunks.
FirmwareName: A 20 character long text field that identifies the firmware.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 15/ 18

5.5.2 Server ⇒ Client

Sends a firmware chunk during the firmware update. The packet contains the
globally explicit name (version) of the firmware and the chunk.
If the Client requested a version or a chunk, that doesn’t exist, than the Server
sends a FIRMWARE packet with an empty name and a 0 chunk ID. (With empty
ChunkData)

Packet body:

Description
1st byte ChunkID (MSB)
2nd byte ChunkID (LSB)

3rd byte FirmwareName (string)
…

22nd byte FirmwareName (string)

23rd byte ChunkData (string)
…

nth byte ChunkData (string)

ChunkID: The identifier of the firmware chunk. It’s a 2 byte unsigned value, which
means that a maximum of 65535 chunks are possible during a single firmware up-
date.

FirmwareName: A 20 character long text field that identifies the firmware.

ChunkData: The binary of the firmware chunk. The protocol doesn’t define the
sizes of the chunks, only the 256 MB ceiling in the Length field of the fixed head
gives an absolute limit.

5.6 DATA

General data packets sent always from the Client to the Server. The following
statements are true to these packets:

• The DATA packets can be stored (Cache flag) on the client’s side and are
resendable.

• The DATA packets can be saved (Save flag) in the client’s side.

• The DATA packets (and only those) can request ACKNOWLEDGE.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 16/ 18

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

1 0 0 0 X X X X
2nd byte Length

5.6.1 Client ⇒ Server

Sends data packets. The packet has one in-flight-unique ID generated by the
Client. The packet has a DataType field, which refers to the semantics of the pack-
age’s contents and the Client and the Server uses it by mutual agreement.

Packet body:

Description
1st byte MessageID

2nd byte DataType (MSB)
3rd byte DataType (LSB)

4th byte Payload (string)
…

nth byte Payload (string)

MessageID: The in-flight-unique identifier generated by the Client to the DATA
packet. The designation of the MessageID-s is continuous, which means that the
Server can detect any data drop-out and can send a RESEND request to the Client
with the missing MessageID.
DataType: This parameter defines the structure and content of the Payload. It’s a
2 byte, unsigned value.
Reserved DataType values:

Value Description
0 An error message on the RESEND packet,

see below.

1-9 Reserved for development, testing.
>10 Device specific data packet, see in the ap-

pendix of the device’s OSP protocol

The 0 value DataType: These packets can be sent from the Client to the Server
if the Server sent a RESEND packet with an invalid ID. In this case the server ac-
knowledges that the ID is invalid and moves on.
The server has to ignore every subsequent 0 valued DataType.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 17/ 18

Payload: A data content that is specified by the DataType, its length is optional and
it’s structure is irrelevant to the protocol. The detailed description of the defined
DataTypes can be found in the appendix.

5.6.2 Server ⇒ Client

The server can never send it to the client.
It depends on the implementation how the Client treats the violation of this rule.

5.7 RESEND

Requests a DATA packet with an in-flight-unique MessageID to be resent.
In the latest version (1.1.) of the protocol DATA packets can be sent in the Client
⇒ Server direction, this way the RESEND packet should only be interpreted in the
Server ⇒Client direction.

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 1 1 1 0 0 0 X
2nd byte Length

5.7.1 Server ⇒ Client

Packet body:

Description
1st byte MessageID

MessageID: The identification of the DATA packet requested to be resent by the
Server.

5.7.2 Client ⇒ Server

This specification doesn’t define circumstances in which the Client would send
such a request to the Server.
It depends on the implementation how the server reacts to the arrival of such pack-
ets.

Optin Kft.

May 2014.

www.en.optin.hu

OSP - Communication protocol specification 18/ 18

5.8 ACKNOWLEDGE

A packet type that is used to acknowledge a given DATA packet with an in-flight-
unique MessageID. Ther current (1.1.) version of the protocol allows a DATA packet
to be sent only in the Client ⇒ Server direction, which means that an ACKNOWL-
EDGE packet should only be interpreted in the Server ⇒ Client direction.

Fixed header:

bit 7 6 5 4 3 2 1 0
1st byte MessageType C S A R

0 0 1 1 0 0 0 X
2nd byte Length

5.8.1 Server ⇒ Client

The Server acknowledges the arrival of a DATA packet. The ACKNOWLEDGE in-
cludes the acknowledged message’s in-flight-unique identifier.

Packet body:

Description
1st byte MessageID

MessageID: The acknowledged packet’s in-flight-unique identifier. In case of an
invalid ID the Client ignores the packet.

5.8.2 Client ⇒ Server

Not permitted in the latest 1.1. version of the protocol.
It depends on the implementation how the Server reacts to the arrival of such
packets.

Optin Kft.

May 2014.

www.en.optin.hu

	Introduction
	Legal Notice
	The foundations of the communication
	Packet structure
	Definitions
	In-flight-uniqueness
	Identifiers
	String/binary types
	Client and Server
	Byte order

	Guarantees
	MessageID guarantees

	Fixed header
	Message Type (MsgType)
	Cached bit (C)
	Saved bit (S)
	AckReq bit (A)
	Length field

	Packet types
	CONNECT/DISCONNECT
	Client Server
	Server Client

	PINGREQ
	PINGRESP
	COMMAND
	Server Client
	Client Server

	FIRMWARE
	Client Server
	Server Client

	DATA
	Client Server
	Server Client

	RESEND
	Server Client
	Client Server

	ACKNOWLEDGE
	Server Client
	Client Server

